
A piecewise deterministic process for homodyne measurement of an atom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 81

(http://iopscience.iop.org/0305-4470/33/1/305)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 81–92. Printed in the UK PII: S0305-4470(00)04768-5

A piecewise deterministic process for homodyne measurement
of an atom

Janusz Mískiewicz
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Abstract. The piecewise deterministic process associated with event enhanced quantum theory
is constructed in the case of homodyne detection of a two-level atom and the counting distribution
is obtained. The non-Markovian property of the photocounting statistics is proved and the sub-
Poissonian character of event registration established.

1. Introduction

A significant technological advance, which has been made in experimental physics, allows for
continuous observation of individual quantum systems (QSs) [1–5]. In most such experiments,
results are obtained in the form of a distribution of measurement events (usually registration
of photons: e.g., [1,2,4]). It is also the case that the distributions are derived from prolonged
observation of individual QSs [1, 2]. Consequently, we cannot use the standard von Neuman
measurement theory, but we have to employ a theory which enables analysis of the behaviour of
individual QSs. Following a general theory of open systems [6,7], the event-enhanced quantum
theory (EEQT) was proposed and developed [8–12]. EEQT describes the measurement of a
QS as an evolution of a total system generated by a completely positive semigroup. The
total system is a coupled quantum–classical system, where the classical part represents a
measurement device and the quantum one an investigated system. They are described by an
Abelian and non-Abelian algebra of observables, respectively.

In order to provide the reconstruction of measurement events, a piecewise deterministic
(PD) process has been established [10]. In contrast to other approaches to the event generation
algorithm (e.g., as a diffusion process [20] or by numerical methods [21]) it has been shown [10]
that this process is a unique PD process which, after averaging, reproduces the evolution of
the coupled quantum–classical system. The uniqueness and explicit presence of events in the
process are essential for deducing the PD algorithm describing real experiments.

In this paper statistical properties of the homodyne measurement of a two-level atom are
investigated by means of a PD process associated to EEQT. We show that the rigorously derived
stochastic process of event registration is not a Markovian one. Despite this, it reconstructs
the same probability of sample history as in [28]. We find that the photocounting statistics
is sub-Poissonian not only in the case of a driven atom [3, 4, 24, 26] but also during the
homodyne detection of a state of an atom. We show that this feature does not depend on the
time of detection. We find that not every state can be observed by the typical set of homodyne
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detection. However, if outcomes of photoelements are treated properly the density matrix of the
atom can be calculated. A similar result might be obtained by optical homodyne tomography
(OHT) [22,23,25]; nevertheless in our case we need only two count distributions, whereas in
OHT a set of such distributions is required.

2. The formalism of EEQT

We start with a brief description of the EEQT and the PD process associated with EEQT.
Detailed descriptions of EEQT and the PD process may be found in [9] and [10], respectively.
The basic idea is to couple two systems (quantum and classical) and describe their evolution
in terms of a completely positive semigroup.

The classical system

We will consider the simplest case of a discrete set of classical events. The elements of the set
of pure states are labelled by indicesα ∈ XCl , whereXCl is a discrete and countable space.
Statistical states of the system are probability measures onXCl : i.e., sequences{pα} which
satisfy

∀α∈XClpα > 0 and
∑
α∈XCl

pα = 1.

The algebra of observables of a classical system (CS) is aC∗-algebraACl of complex functions
onXCl : hereACl is isomorphic tol∞, the algebra of all uniformly bounded sequences. Since
we want to use the Hilbert space language, even for the description of the CS, we construct
the Hilbert space of the CS by choosing the set of base vectors labelled by the elements ofXCl
and taking the closure of the set of all linear combinations of the base vectors.

The quantum system

The observable algebra of a QS isAq = L(Hq)—the algebra of bounded operators on a
Hilbert spaceHq . Pure states of QS are unit vectors inHq . We assume that proportional
vectors describe the same quantum state. They form a complex projective spaceCP(Hq) over
Hq . Statistical states of QS are positive operatorsρ̂ onHq with Tr(ρ̂) = 1.

The total system

We take the tensor product of the algebras of observables for the algebra of observables of
the total system:Atot = Aq ⊗ ACl . It acts on the tensor productHq ⊗HCl . In our caseAtot

can be thought of as an algebra of diagonal matricesA = (aαβ), whose entries are operators
aαα ∈ Aq andaαβ = 0 for α 6= β. Statistical states of the total system are diagonal matrices
ρ = diag(ρ0, . . . , ρn, . . .), whose entries are positive operators onHq . The statistical states
satisfy the normalization Tr(ρ) = ∑α Tr (ρα) = 1. Duality between observables and states
is given by the expectation value〈A〉ρ =

∑
α Tr (Aαρα).

The dynamics of the total system

We have to distinguish two situations: when no information is transferred from the QS to the
CS and when such a transfer takes place. In the first situation, quantum dynamics is described
by the HamiltonianHα : Hα → Hα (it may depend on the state of the CS). Using matrix
notation we writeH = diag(Hα).
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Since the CS has been chosen as discrete it cannot have a continuous-time dynamics of
its own†. Coupling of the system is specified by a matrixV = (gαβ), wheregαβ are linear
operators:gαβ : Hα → Hβ . We assume the evolution of the system is given by completely
positive (CP) semigroupαt , t > 0 of CP maps of the algebra of observables with the property
αt(I ) = I . In view of theorems by Stinspring and Lindblad [14, 15] any norm-continuous
semigroup of CP which maps onAtot is of the form:αt = exp(tL), where

L(A) = i[Hα,Aα] +
∑
β

g∗βαAβgβα − 1
2{3α,Aα} (1)

or, equivalently,

ρ̇ = −i[Hα, ρα] +
∑
β

gαβρβg
∗
αβ − 1

2{3α, ρα} (2)

where

3α =
∑
β

g∗βαgβα. (3)

Brackets [, ],{,} denote the commutator and anticommutator, respectively.

The PD process associated with EEQT

The Liouville equation (2) can be obtained as an expectation value of a PD process. A detailed
mathematical description of this process may be found in [10, 16]. The evolution between
jumps is governed by a complete vector fieldX on the total system. We need two more
components to define the process: jump rate and a transition kernelQ. The vector fieldX
generates a flow8(t, x) in E (the pure state space of the total system), which is given by
8(t, x) = γx(t), whereγx(t) is the integral curve ofX starting at the pointx ∈ E. The
jump rate is a measurable functionλ : E → R+ ∪ {0} such that for anyx ∈ E the mapping
t → λ◦φ(t, x) is integrable at least neart = 0. The set of thosex ∈ E for whichλ(x) = 0 we
denote byE0. The transition kernelQ : B(E)×E→ [0, 1] satisfies the following conditions:

(1) Q(E, x) = 1, ∀x ∈ E.
(2) Q({x}, x) = 0 if x ∈ E\E0 andQ({x}, x) = 1 for x ∈ E0.
(3) ∀0 ∈ B(E) the map is measurable.

HereB(E) denotes the Borelσ -algebra onE. In our case‡E = ∪̇CPα, α = 0, 1, . . . , n and

Xf (9, α) = d

dt
f

(
exp(−iHαt − 1

23αt)9

|| exp(−iHαt − 1
23αt)9||

, α

)∣∣∣∣∣
t=0

(4)

λ(9, α) = 〈9,3α9〉 (5)

Q(dφ, β;9,α) = ||gαβ9||
2

λ(9, α)
δ

(
φ − gαβ9

||gαβ9||
)

dφ. (6)

The triple(X, λ,Q) is called the local characteristic of the process.
Using the above characteristics of the process we can obtain physically interesting

characteristics of the process [16]. Let us define two sequences of measurable random
variables:

Tn : �x → [0,∞] Tn(ω) = tn Xn(ω) = xn
† It is possible to consider the case when the set of classical events is a continuous one, e.g. [13].
‡ CPα—a complex projective spaceCP(Hq ) overHq .
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where�x = {ω ∈ �; x0 = x},� is the set of all sequencesω = (t0, x0; t1, x1; . . .) andt0 = 0,
t0 6 t1 6 t2 6 . . . , tn ∈ [0,∞], xn ∈ E, n ∈ N ∪ {0}. We can interpretTn as a time whenn
jumps took place.

By standard methods of stochastic processes (for the rigorous derivation, see [16]) we
derive the following conditional expectations:

Ex [1{X1⊂0}|T1] = Q(0, φ(T1, x)) (7)

Ex [1{Xn+1⊂0}|Xn, Tn+1] = Q(0, φ(Tn+1, Xn)) (8)

Ex [1{Tn+161}|Tn,Xn] =
{

0 if t < Tn

1− exp(−3(t − Tn,Xn)) if t > Tn
(9)

and the probability of events:

Px [T1 6 t ] = 1− exp(−3(t, x)) (10)

Px [Tn+1− Tn > s] = Ex [exp(−3(s,Xn))] (11)

where3(t, x) := ∫ t
0 λ(φ(s, x))ds. So we are able to calculate any physically interesting

distributions by applying (7–11): e.g., the probability of counting only one event up to timet

reads

Px [T2 > t ∧ T1 6 t ] =
∫ t

0

∫
E

λ(φ(u, x))exp(−3(u, x))
× exp(−3(t − u, y))Q(dy, φ(u, x))du.

3. The homodyne measurement

We construct a stochastic process describing measurement of the state of an atom by means of
homodyne detection. Homodyne measurement is a powerful tool of quantum optics used for
observation of very weak quantum beams [17] (usually under the sensitivity of photoelements)
or special properties of QS, e.g. squeezed states [26]. The basic idea is to disrupt the beam
with a local oscillator by means of a beam splitter [27].

For the sake of simplicity we restrict ourselves to the case where we neglect the influence
of driving field, cavity etc. We consider only the mutual interaction of the atom and the
homodyne measurement†.

The EEQT description of the homodyne measurement

The CS consists of two photodetectors, whereas a two-level atom constitutes the QS. The state
space of the QS isCP 1 and that of the CS is represented byN 2 (we assume that{0} ∈ N ), so
the pure state space of the coupled quantum–classical system is given by

⋃∞
n,m=0CP

1.
We define the evolution of the system by the following assumptions:

H = 0

g(i,j)(k,l) =


√
(
γ

2 )(A + iβ) when i= k + 1, j = l√
(
γ

2 )(A− iβ) when i= k, j = l + 1

0 in other cases

(12)

whereH is the Hamiltonian of the QS;g(i,j)(k,l) are the coupling operatorsA = (0 0
1 0

)
; γ

is the coupling constant of the QS and CS; andβ is the coupling constant of the QS and
local oscillator. The above assumptions mean that we neglect the possibility of simultaneous

† Outlines of methods of homodyne detection may be found in various works, e.g. [28].
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measurement of a photon by both detectors. The evolution of the QS is given by a modified
Schr̈odinger equation:

9̇t = (−iH − 1
23)9t (13)

whereH is given by (12) and3 = γ (A†A + |β|2). A solution for9t can be written as
9t = Û (t)90, where

Û (t) = e−
1
23t = e−

1
2γ (A

†A+|β|2)t . (14)

Equation (14) can be written in the explicit form [28] as

Û (t) =
(

exp(− γ

2 t) 0
0 1

)
. (15)

We define the excited and ground states as9e =
(

1
0

)
and9g =

(
0
1

)
. Using the above

assumptions and the general procedure we can set the PD process.

4. The stochastic process

First, we will investigate the stochastic properties of the system and compare the homodyne
measurement with the detection of coherent light.

Using the assumptions of the system from section 3 and a general procedure [10] we define
the ingredients of the PD process in the following way. The jump rate for all(i, j) is

λ(9, (i, j)) = 〈9,39〉. (16)

The transition kernel is

Q(dφ, (i, j);9, (k, l)) = δk+1
i δlj

2

||(A + iβ)9||2
||A9||2 + |β|2 δ

(
φ − (A + iβ)9

||(A + iβ)9||
)

dφ

+
δki δ

l+1
j

2

||(A− iβ)9||2
||A9||2 + |β|2 δ

(
φ − (A− iβ)9

||(A + iβ)9||
)

dφ. (17)

The deterministic flow is given by

8(t, (9, (i, j))) = Û (t)9

||Û (t)9||2 . (18)

We begin investigation of the system by finding the probability of observing one possible history
of measurement: i.e., to register a sequence(j1, . . . , jN), whereji = ±1. If ji = 1, then the
ith registration was done by detector DI (whenji = −1 by DII). We denote the probability of
observing a sequence(j1, . . . , jN) within the time interval(0, t) by pt(j1, . . . , jN). Then

pt(j1, . . . , jN) =
∫ t

0
dtN

∫ tN

0
dtN−1 . . .

∫ t2

0
dt1

∫
E

. . .

∫
E

e−3(t1,α0)λ(φ(t1, α0))

×Q(j1, φ(t1, α0))e
−3(t2−t1,α1)λ(φ(t2 − t1, α1))

×Q(j2, φ(t2 − t1, α1))× · · · × e−3(tN−1−tN−2,αN−2)

×λ(φ(tN−1− tN−2, αN−2))Q(jN−2, φ(tN−1− tN−2, αN−2))

×e−3(tN−tN−1,αN−1)λ(φ(tN − tN−1, αN−1))

×Q(jN−1, φ(tN − tN−1, αN−1))e
−3(t−tN ,αN ). (19)
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In order to simplify (19) we use (16), (17) and the following expression:

exp(−3(t, (9α, α))) = exp

(
−
∫ t

0
ds φ(s, (9α, α)

)
= exp

(
−
∫ t

0

〈
Û (s)9α

||Û (s)9α||
, γ (A†A + |β|2) Û(s)9α

||Û (s)9α||

〉)
. (20)

Because
d

ds
||Û (s)9||2 = 〈Û (s)9,−γ (A†A + |β|2)Û(s)9〉 (21)

we get

exp(−3(t, (9α, α)) = exp

(∫ t

0

d
ds ||Û (s)9||2
||Û (s)9||2 ds

)
= ||Û (t)9||2 (22)

and obtain (19) in the form

pt(j1, . . . , jN) =
∫ t

0
dtN

∫ tN

0
dtN−1 . . .

∫ t2

0
dt1||Û (t − tN )(A + jN iβ)

×Û (tN − tN−1) . . . Û (t2 − t1)(A + j1iβ)Û(t1)90||2. (23)

If we use the explicit form of90

90 =
(
a

b

)
(24)

with the condition||90|| = 1 we obtain the equation

pt(j1, . . . , jN) =
(γ

2

)N |β|2NtN
N !

(|b|2 + |a|2e−γ t )e−γ |β|
2t

+
(γ

2

)N
|β|2(N−1)|a|2e−γ |β|

2t
N∑
k=1

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ sk

+2
(γ

2

)N
|β|2(N−1)|a|2e−γ |β|

2t
∑
k<l

jkjl

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ

sk+sl
2

+i
(γ

2

)N
|β|2(N−1)(βa∗b − β∗ab∗)e−γ |β|2t

×
N∑
l=1

jl

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ sl . (25)

Properties of the stochastic process

Using expression (19) we can construct many random variables and calculate their expectation
values. We investigate the simplest case of the sum and difference of detector counts. The
first one is important because it allows us to compare photodetection of coherent light and the
system used for homodyne measurement. In the second, we treat the outputs of photodetectors
in the same manner as in the case of the homodyne measurement.

We define the counting measurement as the result of summing the number of detections
made by detectors DI and DII.

The contrasting measurement is the difference between the counting done by detectors
DI and DII. This is exactly what is obtained in homodyne measurement where we observe the
difference of photocurrents between both photoelements.
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The counting measurement

We find the probability of obtainingN counts in timet by

pHN (t) =
∑

j1,...,jN=±1

pt(j1, . . . , jN). (26)

Substituting (25) into (26) we get

pHN (t) = γ N
|β|2NtN
N !

(|b|2 + |a|2e−γ t )e−γ |β|
2t

+|a|2γ
N−1|β|2(N−1)tN−1

(N − 1)!
(1− e−γ t )e−γ |β|

2t . (27)

Equation (27) can be rewritten as

pHN (t) =
(γ |β|2t)N

N !
e−γ |β|

2t (|b|2 + |a|2e−γ t ) +
(γ |β|2)t)N−1

(N − 1)!
e−γ |β|

2t (1− |b|2 − |a|2e−γ t ).

(28)

It is easy to see that the stochastic process (28) can be defined as a superposition of two
independent Markovian processes. One is the Poissonian process:pPN(t) = (γ |β|2t)N

N ! e−γ |β|
2t ;

and the second is the irreversible (birth–death) process with the probability of registration of a
state:q1 = 1− q0 whereq0 = |b|2 + |a|2e−γ t . This process can be thought of as a registration
process with efficiency 1− |b|2. The transition matrix for this process is given by

p00(s, t) = q0(t)

q0(s)
(29)

p10(s, t) = q0(s)− q0(t)

q0(s)
(30)

p01(s, t) = 0 (31)

p11(s, t) = 1. (32)

Using the above description it is straightforward to compare the process associated with
homodyne measurement and the Poissonian one. We use the quantity defined in [5]:

Q = 1n2

n
− 1. (33)

Because the Poisson process and the irreversible one are independent we have

X = X1 +X2 (34)

X = X1 +X2 (35)

1X2 = 1X2
1 +1X2

2 (36)

whereX, X1, X2 denote the PD process, the Poisson process and the birth–death process,
respectively. Therefore,

X1 = γ |β|2t (37)

X2 = |a|2(1− e−γ t ) (38)

1X2
1 = γ |β|2t (39)

1X2
2 = |a|2(1− e−γ t )(1− |a|2(1− e−γ t )). (40)

So the quantityQH for the homodyne measurement process reads

QH = −|a|4(1− e−γ t )2

γ |β|2t + |a|2(1− e−γ t )
(41)
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(a)

(b)

Figure 1. Comparison ofQH plotted for different values of|β|2 (from 0.2 to 1 in steps of 0.2
beginning with the lowest). (a) |a|2 = 0.5 and (b) |a|2 = 1.

and implies thatpHN (t) is a sub-Poissonian process.
From figure 1 we see that the observability of the sub-Poissonian statistics of the

distribution strongly depends on the value of the coupling constant|β|2. However, comparing
the experimentally obtained data [5] and figure 1 we see that sub-Poissonian statistics may
be easily observed, even in the case of a state different from an excited one and with a high
value of|β|2, although the best results will be obtained in the case of a properly chosen time
of observation. We present the plots ofQH for different initial values of|a|2 and the coupling
constant|β|2.
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Using short counting time, equation (41) may be written as

QH = −γ t |a|4
|β|2t + |a|2 . (42)

This coincides exactly with the result obtained in [30] for photodetection, but in the case of long
counting time we obtain the convergence to the Poissonian process because limt→∞QH = 0,
whereas for photodetection [30]QD 6= 0 even for a long time.

Stochastic properties of the counting measurement

The transition probability function of the process (28) is given by

p((n, t0), (n + k, t0 + t)) = pPn (t0)q0(t0)

pHn (t0)
(pPk (t)q0(t |t0) + pPk−1(t)q1(t |t0))

+
pPn−1(t0)q1(t0)

pHn (t0)
pPk (t) (43)

for all k > 0 and zero fork < 0. p((n, t0), (n + k, t0 + t)) is the probability of registering
n + k events during the interval(0, t0 + t) under the condition of observingn events up to time
t0; q0(t |t0) is the conditional probability that in the timet there is no registration (under the
condition that up to timet0 there was no counting) andq1(t |t0) is the conditional probability
of a registration particle within period(t0, t) (under the same condition as above). We define
these quantities as follows:

q0(t |t0) = q0(t0 + t)

q0(t0)
(44)

q1(t |t0) = q1(t0 + t)− q1(t0)

q0(t0)
. (45)

The transition probability (43) satisfies
∞∑
k=0

p((n, t0), (n + k, t0 + t)) = 1. (46)

Proof of (46) is straightforward by substituting equation (43), using properties of the Poissonian
process and definition of the conditional probability. The second property is

∞∑
k=0

p((n, t0), (l, t0 + t))pHn (t0) = pHl (t0 + t). (47)

In order to prove (47) it is enough to substitute (43) into (47) and use the property of the
Poissonian process:

∑∞
n=0p

P
n (t0)p

P
l−n(t) = pPl (t0 + t). However, it is worth noting that the

transition probability function (43) is not a Markovian one. This can be easily checked by
showing that equation (43) does not satisfy the following Chapman–Kolmogorov equation:

p((n3, t3), (n1, t1)) =
∞∑
n2=0

p((n3, t3), (n2, t2))p((n2, t2), (n1, t1)). (48)

However, as was pointed out before, the PD process associated to EEQT is a Markov process.
From the physical point of view it is interesting to derive two other characteristics of the

process: a transition functionp(n, t, t + T ) and the expectation value of counts.
The transition functionp(n, t, t + T ), gives us the probability of measuringn events in

the time interval(t, t + T ):

p(n, t, t + T ) =
∞∑
k=0

p((k, t), (n + k, t + T ))pHk (t). (49)
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Substituting (43) into (49) and using properties of the Poissonian process we get

p(n, t, t + T ) = pPn−1(T ) + (pPn (T )− pPn−1(T ))(q0(t + T ) + q1(t)) (50)

or, in equivalent form,

p(n, t, t + T ) = pPn (T )(q0(t + T ) + q1(t)) + pPn−1(T )(1− q0(t + T )− q1(t)). (51)

From (51) we see that the probability of countingn events within the time interval(t, t +T ) is
the sum of two possible events: one when all counting is done by the Poissonian process and
the second whenn−1 are done by the Poissonian process and one by the irreversible counting
process.

The expectation value of counts for the probability distribution (26) is given by

pH+ (t) = γ |β|2t (|b|2 + |a|2e−γ t ) + |a|2(1− e−γ t )(γ |β|2t + 1). (52)

In the case of9e and9g equation (52) simplifies to

9e ⇒ pH+ (t) = 1 +γ |β|2t − e−γ t (53)

9g ⇒ pH+ (t) = γ |β|2t. (54)

The expectation value of the contrasting measurement

We obtain the probability that the difference between the counting of detectors DI and DII is
R under the condition that the total number of counted states isN as

pHR,N(t) =
∑

j1+···+jN=R
pt (j1, . . . , jN). (55)

In order to simplify calculation of the expectation value we introduce the following quantity:

vHR,N(t) =
∑

j1+···+jN=R
pt (j1, . . . , jN)−

∑
j1+···+jN=−R

pt (j1, . . . , jN). (56)

Substituting (25) into (56) and performing all necessary calculation we get

vHR,N(t) = 2i
(γ

2

)N
|β|2(N−1)(βa∗b − β∗ab∗)e−γ |β|2t

×
∑

j1+···+jN=R

N∑
l=1

jl

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ

sl
2 . (57)

When we sum over the indexjl with the conditionj1 + · · · + jN = R the number of indicesjl
with +1 and−1 is, respectively,

k = N +R

2
(58)

l = N − R
2

. (59)

Since there arew(+) andw(−) possible combinations with the signs + and−, where

w(+) = N !

(k − 1)!l!
(60)

and

w(−) = N !

k!(l − 1)!
(61)

so ∑
j1+···+jN=R

jk = w(+)− w(−) =
(
N

k

)
(2k −N). (62)
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Using (62) we calculate that∑
j1+···+jN=R

N∑
l=1

jl

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ

sl
2

=
N∑
l=1

(
N

k

)
(2k −N)

∫ t

0
dsN

∫ sN

0
dsN−1 . . .

∫ s2

0
ds1 e−γ

sl
2

=
(
N

k

)
(2k −N) tN−1

γ (N − 1)!
(1− e−γ t ). (63)

By substitution of (63) into (56)

vHR,N(t) = 2i
(γ

2

)N
|β|2(N−1)(βa∗b − β∗ab∗)e−γ |β|2t

×
(
N

k

)
(2k −N) tN−1

γ (N − 1)!
(1− e−γ t ) (64)

and we obtain eventually the expectation value of this measurement:

pH− (t) = −i(βa∗b − β∗ab∗)(γ |β|2t + 1)(1− e−γ t ). (65)

In the case of the excited and ground states:

9e ⇒ pH− (t) = 0 (66)

and

90⇒ pH− (t) = 0. (67)

5. Observability of states

One of the most interesting features of the investigated measurement is the possibility of
receiving two kinds of information.

We see, by the comparison of equation (52) and (65), that in the case of the counting
measurement we receive information about the absolute value of a component of the initial
state of the atom. On the other hand, the contrasting measurement, usually called the homodyne
measurement, allows us to measure the initial state of the system. Unfortunately, we cannot
observe all of the states in this way. The measurable states must obey the condition

βa∗b − β∗ab∗ 6= 0. (68)

Equation (65) allows us to optimize the system (the coupling constantsβ, α) to adjust the
device to an expected initial state. However, this is not the only information which could be
gained from the results of both kinds of experiments. Equation (68) can be expanded in the
form

i(βa∗b − β∗ab∗) = 2(βRaI bR − βRaRbI − βIaRbR − βIaI bI ) (69)

whereβR, βI , aR, aI , bR, bI are real and imaginary components ofβ, a, b, respectively. If we
perform two measurements on the same QS by two different values of coupling constantβ we
obtain

βI = 0⇒ i(βa∗b − β∗ab∗) = 2βR(aI bR − aRbI ) (70)

and

βR = 0⇒ i(βa∗b − β∗ab∗) = −2βI (aRbR + aIbI ). (71)

So these two measurements allow us to fully characterize the density matrix of the measured
system. This is a significant simplification of the optical homodyne tomography [25], which
required a set of count distributions.
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